

The Freshwater Trust is a 501(c)(3) not-for-profit organization that actively works to preserve and restore freshwater ecosystems.

Water Quality Trading Program Requirements and Monitoring

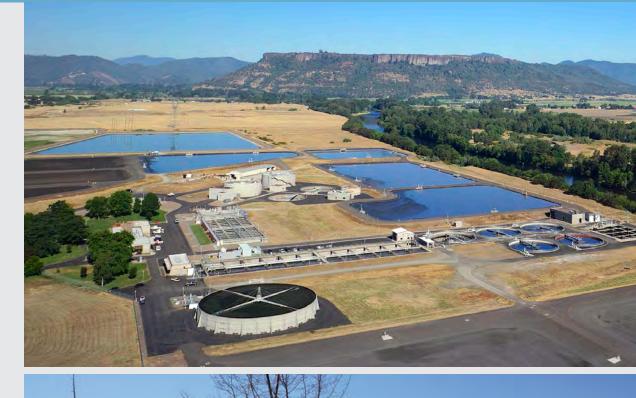
Julia Bond, The Freshwater Trust, Portland, OR, USA

Julia Bond Ecosystem Services Analyst 503.222.9091 x33 julia@thefreshwatertrust.org **www.thefreshwatertrust.org** 65 SW Yamhill St #200 Portland, OR 97204

Restoration Transaction Process

Case Study: City of Medford

Project Funding & Recruitment	Project Implementation	Credit Calculation	Verification, Certification & Credit Registration	Credit Sale
----------------------------------	---------------------------	-----------------------	--	-------------



Population: 170,000

Projected Excess Heat under new TMDL limits: 300 million kcals/day in 10 years

Options:

Giant holding pond to store water for 1 month each year:
\$16 Million

Riparian Restoration vs. Credit Generating Restoration

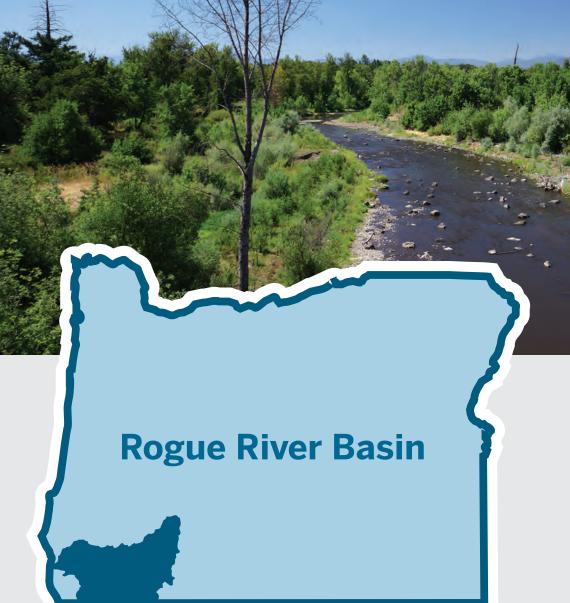
Traditional Restoration Steps	Compliance-Grade Credit Generation Steps	
Identify project site	Identify project site	
Fundraising	Financing	
	Negotiate 20+ year contract with landowner	
	Collect pre-project data	
Project design	Project design	
	Estimated credit values	
Implement	Implement	
	Verification that implementation meets standards	
	Certification that credits meet accounting protocols	
	Credit registration	
Monitoring and maintenance (Years 1 – 3)	Monitoring and maintenance (Years 1 – 3)	
	Monitoring and maintenance (Years 4 – 20)	
	Annual payments to landowners (20+ years)	

 → 10-15 miles of native riparian vegetation restored and maintained for 20 years:
\$6.5 Million

Outcome:

Riparian restoration program to comply with NPDES permit requirements

Money Stays in Local Economy:

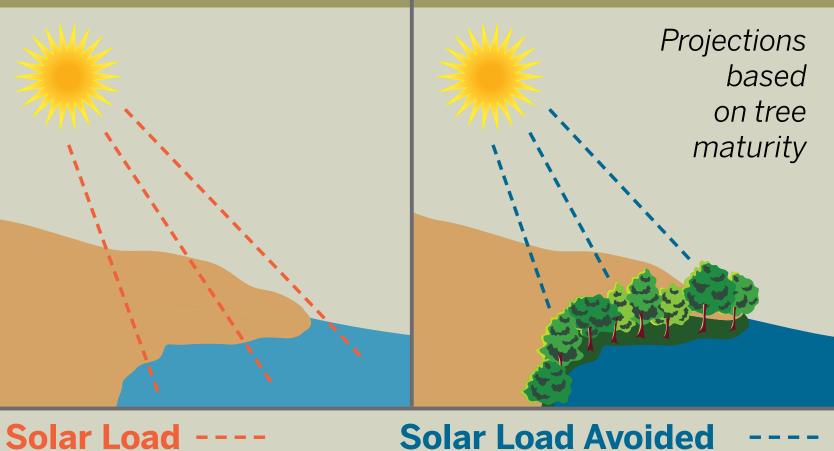

- → Money pays local restoration contractors
- → Farmers get annual lease payments
- Restoration = 20 jobs per \$1 Million spent*

* Adapted from M. Nielsen-Pincus, C. Moseley. 2010. Economic and Employment Impacts of Forest and Watershed Restoration in Oregon. Ecosystem Workforce Program Working Paper Number 24. University of Oregon. http://ewp.uoregon.edu sites/ewp. uoregon.edu/files/downloads/WP24.pdf

Four Keys for Communities

- → ECONOMIC: Restoration for compliance is generally far less expensive than technological solutions, spread over many years
- → **SOCIAL:** Restoration keeps money in the local community, creating jobs
- → ECOLOGICAL: The restoration solution converts point-source investment into non-point source projects, with multiple environmental benefits
- → **TURN-KEY:** Cities only pay for certified credits

As Built Conditions: May 2012

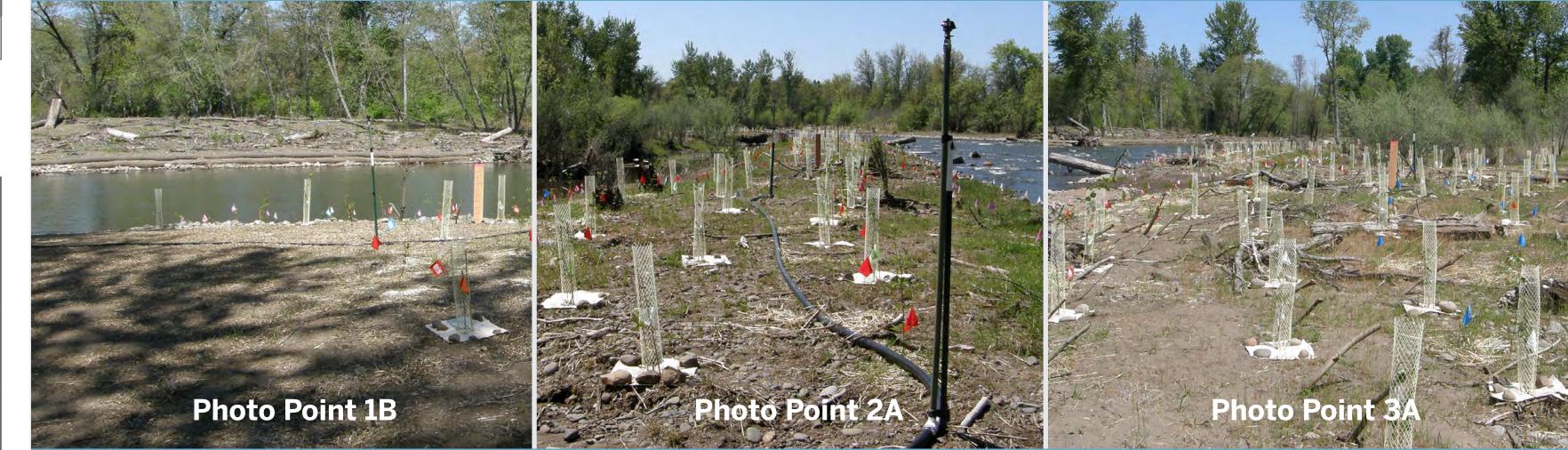

= Local Project Managers

= The Freshwater Trust

HOW IT WORKS: Calculating Uplift for Solar Load Avoided

UPLIFT = Change in kilocalories per day (a measurement of energy)

BEFORE Restoration AFTER Restoration



	Credit Type	Pre-Project	Post-Restoration	Reduction
	Temperature (kCals/day)	56,246,205	41,726,475	14,519,730
	Phosphorus (lbs/year)	6	1	5
	(IDS7 year)			
s d e	Nitrogen (lbs/year)	103	12	91
	Sediment (lbs/year)	8,243	3,331	4,912

Nutrient Tracking Tool — http://nn.tarleton.edu/NTTWebARS/ A. Saleh, O. Gallego, E. Osei, H. Lal, C. Gross, S. McKinney and H. Cover. 2011. Nutrient Tracking Tool—a user-friendly tool for calculating nutrient reductions for water quality trading. Soil and Water Conservation Society. November/ December 2011 vol. 66 no. 6 400-410

 Heat Source — http://www.deq.state.or.us/wq/tmdls/tools.htm
M. Boyd and B. Kasper. 2003. Analytical methods for dynamic open channel heat and mass transfer: Methodology for heat source model Version 7.0. Oregon Department of Environmental Quality.

Three Keys to Restoration Viability

Year 1 Conditions: September 2012

Year 2 Conditions: September 2013

CLEAR AUTHORITY:

Regulators must adopt and promote required rules

CLEAR FRAMEWORK:

Approved standards and protocols for measuring ecosystem services and implementing credit generating projects

CLEAR ROLES:

Third parties (such as The Freshwater Trust) willing to assure delivery of compliance-grade credits with secure, turn-key projects

